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Motivation

To develop (long term) tracking methods that are:
e Accurate
e Efficient

Symplectic tracking with one-turn maps:
1. Compute truncated one-turn Taylor map
2. Symplectify it

3. Iterate the resulting exactly symplectic map

It is very important to incorporate all relevant
effects in the one-turn map, and to symplectify it in
the right way
Y
ACCURATE FRINGE FIELD EFFECTS AND
OPTIMAL SYMPLECTIFICATION




On the fringe ...

Fringe field effects are often neglected or simplistic models
are employed

The fringe fields are sometimes important:
e Noticeable, but not a limiting factor (LHC)

e The effects tend to become especially significant for
small rings and large emittances (Muon Collider and
Neutrino Factory)

Generic fringe field effects:
e aperture dependent
e fall-off shape dependent

e sharp cutoff leads to divergences
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Figure 1: Center tunes as a function of aperture.
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Figure 2: First-order and second-order y-chromaticities as a func-

tion of aperture.
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Figure 3: Tracking pictures for six different fringe field shapes.
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Figure 5: Blowup of the amplitude dependent tuneshifts in the

sharp cutoff approximation.
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Application to the Neutrino Factory and the
Proton Driver

e Generic fringe field shape

e More detrimental for the Neutrino Factory than the
Proton Driver

Conclusions

e Incorrect treatment of fringe and other nonlinear effects

can lead to incorrect prediction of dynamic behavior

e It is wise to study fringe field effects on a case-by-case
basis

= Need method for “exact” fringe field map
computation
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Figure 6: Tracking of the Neutrino Factory without and
fringe field effects.
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Figure 7: Tracking pictures of the Proton Driver without and

with fringe fields, and momentum offsets of 0 and +4%.
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Differential Algebra-based multipole
decomposition

Applicable to current dominated superconducting magnets,
for which analytical magnet models exist

Properties:
e It is exact within the model

e It is the only practical analytic method that works to
very high orders

e It is easy to check and enforce Maxwell’s equations




Figure 8: Lead End of the High Gradient Quadrupoles of the
Large Hadron Collider.

Figure 9: Return End of the High Gradient Quadrupoles of
the Large Hadron Collider.
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DA field representation

e An analytic magnet model is needed (for example the
LHC HGQ lead and return ends; by G. Sabbi, described in
the Fermilab report TD-97-040)

e [t is based on the Biot-Savart law for a piece of straight

current wire in 3D

e A naive implementation
é__kf@>”§) <2b 2b 4 )
b2 —4ac va Va+b+e Va+b+ec

We used the shorthand notations k = —pug/(47), a = |T's
. 2
b=2ﬂ-hmﬂc:vw.

”

e Differential Algebraic (DA) field computation consists of
evaluation in DA of the above formula, and summation over
all the contributions of the individual wires. This yields the

values and all derivatives to any order of the fields.
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Numerical pitfalls

Are due to cancellation:

Z§_ki<“<ﬂ) <2b 2b dc )
b2 —dac va Va+b+ce Va+b+c

e If b+ ¢ < a (short piece far from the reference point)

o If b? ~ 4ac (wire (almost) parallel with the starting
position vector)

Can be eliminated with the help of various simple tricks;
numerically stable result is

kI <f>< f’s)

ﬁ+ﬂ(ﬁ+ﬂ+m0.

|7, |% cos? 6 +

B =

| 2

s
2

o+ ]

a+q

|75 +

|7 | cos? 0 + m cosf +
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Comparison between Mathematica and
COSY Infinity

Mathematica

e Computation of derivatives in: one variable (x), one field

component (B, ), one piece of wire

Order ag]iy (0,0,0)
x

n Lines of Fortran Eval. time [u sec]
0 4 300
1 20 800
2 69 2400
3 188 7000
4 457 16000
5 1009 36000
6 2078 72900
7 4059 140900
8 7567 267000
9 13603 480000

e Mathematica-computed derivatives also have cancellation

problems
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COSY Infinity

e Computation of derivatives under the same conditions

Order 85%" (0,0,0)
X
n Evaluation time in psec up to order n
1 5
5 7
10 11
15 21
20 48
25 94

e It is the only feasible method in all 3 variables
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Comparison between the two
implementations of the Biot-Savart law

e Numerically unstable form

<V><J§>S

Coefficient Order

0.3368312531613524 2
0.1135639355887008E-06 2
0.2237449336917052E-08 2
0.6101442684425235E-09 2
0.1121592163033647E-06 2

-.3368312554111546 2
0.8482986704194671E-06 3

-1010523.362231316 3
0.4430214737283222E-06 3
-.3117654705420136E-04 3
-.3840225446083422E-05 3
0.9449170335074086E-08 3
0.6295506663533956E-05 3
-.2090122526610116E-05 3

1010523.362276393 3
0.5070636007076246E-05 3

Exp. (z,s,y)

200

~




e Numerically stable form

.
<V X B)

S

Coefficient Order
.6297175136893429E-07 2
.1135643710736822E-06 2
.2254658681977162E-08 2
.6101880112296945E-09 2
.1121600312625759E-06 2
.6522627415961324E-07 2
.1035163990081857E-06 3
.3603849257016734E-05 3
.2310457119847342E-05 3
.2364236389995611E-07 3
.1977820552667708E-05 3
.9434835135380232E-08 3
.2256179271853398E-05 3
.1999900781868291E-05 3
.3674740044701252E-05 3
.0278849333327333E-07 3

Exp. (z,s,y)

200
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Multipole expansion

e Scalar potential: in the region of interest V X B= 0, thus
the fields are derivable from a magnetic scalar potential
that satisfies the Laplace equation

The general solution is

o0

Vg = Z (b1(s)sinle + ag i (s) coslp) rk

k,1=0

e Recurrence relations among coefficients

by (s)

— (I +2v)?)
a2 (s

Ay2n,1(8) = mr_, (12 — (1 +2v)?)

bitoni(s) = NG

e All other coefficients that cannot be obtained by these

relations are zero.

e Thus, the free parameters that can be used to satisfy
boundary conditions are the b;;(s) and a;;(s). They are
called multipole strengths. The non-vanishing coefficients
that are induced by their s-dependence are called

pseudo-multipoles.
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Iterative multipole extraction

e The field components B, and B, in the plane y = 0
contain all the information

By(x,y =0,s) = Zgl(x,s) gt
=1

By(z,y =0,s) = Zfl(a:,s) gt
=1

where

o0

gi(z,s) = Z(l +2n)ary2n.1(8)z*"

e The multipole strengths can be extracted iteratively
starting with the dipole component.

-




Enforcing Maxwell’s equations

e Magnet models are often not closed: image currents,
“leads”, separate treatment of the two ends (in case of LHC
HGQs lead and return ends)

e Closing the model is required by: Maxwell’s equations,
numerical stability of the multipole extraction algorithms

e There are two methods to accomplish it

e Physically add wires in such a way that all the loose

ends close at “infinity”

e By imposing that the fictitious closing wires should
minimize the modification of the original fields in a
neighborhood of the optical axis

- /
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First method (Local Maxwellification)

e Physically close the model by adding new wires

e It is enough to compute the field components in two
variables (z, s) and obtain from them the field in the whole
space. This is done by transforming the Laplace equation

for the potential into a fixed point problem.
Y oV(z,y, s)

Vix,y,s :Vx,0,8—|—/ e~
(@.0,8) = V(0.9 + | o

y=0

0%V (x,7, s) 82V(:v,§,3) o
//( O0x? 0s? )dydy

The two initial conditions are

/ YOV (z,y,)
0 Y

dg =Y~ By(il?, 07 8)
y=0

V(,0,s) = / B.(Z,0,0)d + / B.(z,0,5)d5
0 0

e Once we have the potential we can recompute the fields in

the whole space by mere differentiation
This is a simple way to correct for small numerical errors

e Local Maxwellification can be done the same way in 3D
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Second method (Global Maxwellification)

e No physical closings, but compute the fields in all 3
variables.

o If B (x,9, s) is the result such that V - B =0 and
V x B # 0, there exists R (x,y, s), which stands for the
fictitious closings, such that

V-R=0
V X (é + ﬁ) =0
It follows that in general
R¢ (Ta P, S) —

f(r,s)sinlg + g(r, s) coslp) r!

Mg

l:O

—B¢(7‘, ¢7 8)

We obtain a minimal Ry if we choose the free parameters in

f and g to cancel the corresponding terms in Bj.
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Implementation

e The practical implementation in COSY in actually an

analytic s-dependent Fourier transform of By or B,

e Once we have the multipoles, the out of axis expansion is
performed, the potential built up, and the new field
components computed by differentiation

e The new field will satisfy Maxwell’s equations exactly, and
will alter the original field minimally; we call the method
global Maxwellification

e In case the magnet model is already Maxwellian, the two
methods are completely equivalent

e Using any of the methods it is trivial (and very accurate)
to check whether Maxwell’s equations are obeyed

-
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Examples of LHC multipoles

e Multipole strengths (normal and skew) have been
computed in both ends up to 28-poles

e Derivatives of multipoles have been computed up to order
12

Fringe field maps

e The equations of motion are integrated in COSY, yielding
the map

e There are two methods on which computation of maps is
based: a) Multipoles interpolated using Gaussian
interpolation, or b) the potential is interpolated by a
derivative preserving method

e The two methods are equivalent

Tracking the LHC

e Fully accurate fringe field maps incorporated

Conclusion: Fringe fields introduce important nonlinear
effects, but are not a limiting factor for the dynamic

aperture.
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Figure 10: Normal multipoles of the lead end.
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Figure 11: Skew multipoles of the lead end.
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Figure 13: Symplectic tracking of the ideal lattice of the LHC
without and with fringe fields.
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Symplectification methods

Factorizations in “elementary” maps: Cremona,
Solvable map, Integrable polynomial, Monomial, Kick, Jolt

Generating Functions: Conventional F; through Fj
(Goldstein’s notation)

But there are more generating function types!
How many?

Which type of generating function is the best for
symplectification purposes?

= Develop the general theory of generating
functions and formulate the condition for optimal

symplectification
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General theory of generating functions

Outline: Given a 2n dimensional symplectic map, look for
scalar functions of 2n variables, defined on some space
different from phase space, which give a representation of
the symplectic map by some algorithm, through its partial

derivatives.

Geometrization of the problem: The most general and
transparent way to proceed is to transform the dynamical
problem into a problem in symplectic geometry.

“Everything is Lagrangian”: Symplectic maps, and
scalar functions under certain conditions can be put into
one-to-one correspondence with Lagrangian submanifolds of
appropriate symplectic manifolds.

Identification of Lagrangian submanifolds: The most
general diffeomorphism that sends the Lagrangian manifold
determined by the symplectic map onto the Lagrangian
submanifold determined by some scalar function extends to
a local conformal symplectic map.

- /
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General theory of generating functions

If we denote the symplectic map by M, we call F' the
generating function of type a of M if the following
relationships hold:

—1

M M
(VEY' = | ajo o ago
Z z
—1

V)" T

N G (7
Z z

1

where o= “ ., al= “

Qo a?

7 is the identity map, and « is a conformal symplectic map,
meaning that it satisfies:

(Jac ()" Jun Jac (@) = pdan,

for nonzero u, and

A B -~ Jon  Oaq
Jac (a) = , Jan = . .
C D 02n _JQn
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Equivalence classes of generating functions

e Two generator types are equivalent if they produce
exactly the same symplectified map

e The set of generating functions is degenerate from the
symplectification point of view

e The pool of generators reduces to equivalence classes

For a given symplectic map M with linear part M, let 31,
B2 be linear conformal symplectic maps

Ai2 Bip
Jac (f1,2) = :
Ci2 Dipo

such that C oM + Dy » is invertible. Let
S(f1,2) =—J (Ci12M + D1,2)_1 (C12M — Dy 2).
Then, Fjg, is equivalent with Fjg, if and only if
5(51) — 5(52)-
e Observation:

Jac (a) = e J
— LT+ JS(Bro)) M™" L (I — JS(Brs))

produces an equivalent generator type.
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/Equivalence of symplectification procedures
with/without the linear part

M=M+H,

e We can distinguish three symplectification procedures:
symplectify M,, directly (using some §), symplectify My, ,,
(using some other S) obtained from

Mp=T+M"1oH,

or symplectify Mg, (using yet some other S) obtained
from

Mrp=I+HoM "
e Relation among the maps

./\/l = Mo ML,
M= MproM.
e Question: Do these relations continue to hold for the

symplectified versions of the corresponding maps?
e Answer: Yes, if and only if

S =28,
S =MTSM.
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Hofer’s metric and optimal symplectification

e We need to define some “closeness” criterion
e Desirable properties of the metric:

¢ Symplectification should work well for any particle in

a given Poincaré section

¢ Coordinate independence, meaning that what is ideal
for M = ideal for Ao Mo A7 for any symplectic A

Solution: Hofer’s metric

Definition: For any two ¢, € Ham, (RQ”), we define the

distance between them as

plo) =, inf /O : (math (2) — min H, (z)> dt.

Po=p,P1= zER2n 2ER2n

The infimum is taken over all smooth paths in Ham, (RQ”)

from ¢ to . Here ||H¢|| = max Hy (2) — min Hy (2) is
zER2n zER2n

called the oscillation norm.
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Hofer’s metric

Hofer’s metric is an essentially unique
O Intrinsic
¢ Bi-invariant
O Finsler

metric for Hamiltonian symplectic maps.

Definition: A symplectified map is called optimal, if the
distance in Hofer’s metric between the exact map and the
symplectified map is minimized over the set of all
symplectified maps.

Theorem: There exists a neighborhood £ of any
M € Ham, (R*") , and a neighborhood Z of 0 in C° (R*")
such that the map

D :Z—E DB, (F)=M

s 1sometric for any «, as long as the corresponding

generating function type exists for both symplectic maps.
That is, for every F,G € Z,

||F_G|| — |M| 'p((I)oz (F)aq)oz (G))
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Optimal symplectification

e In practice it is straightforward to compute F),

e Applying Hofer’s metric to symplectic tracking of

accelerators, we obtain

P((I)a (F)aq)a (Fn)) — ||F_Fn||

Conclusion: for compactly supported Hamiltonian
symplectomorphisms, the optimal symplectification using the
mized variable generating function method is achieved by
the order n 4+ 1 truncated generating function that has the
smallest oscillation norm of the terms neglected, above
order n + 1, and therefore minimizes the right hand side of
the above equation.

- /
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Choosing the best generating function

e Minimization of ||F' — F,|| & Minimization of || F||

e Estimate F' from

where
Z2=Mi(z),
w=as(Z2).
It follows that
M M
| F <]l a1 o |-l azo | -
7 7

e Moreover,
a1 (272) =0+0 (22) )

1
(12(?3,2)=I°Z-I-§([—I—JS)-(9(,22).

~




EXPO

In general (statistically, or on average), optimal
symplectification is achieved by the class [S] obeying

S =0,

corresponding to the generating function type associated
with
—~JM~1 g

Jac(a) = 1
s M 3!

We call it the EXtended POincaré (EXPO) type.




Examples

. A symplectic map generated from a random
Hamiltonian.

. An anharmonic oscillator:

Ll oy 1y
H—Q(p+q) 74"

. An exactly symplectic quadratic map:
M=NolL,
where

cosf sinf

—sinf cosf
with 6 = I, and
2
K q—3(q+p)
- 2
p p+3(qg+p)

. A lattice of the proposed Neutrino Factory, and the

Proton Driver.
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Figure 14: Non-symplectic tracking with Taylor maps of orders
19 and 11, and order 11 symplectic tracking with EXPO for a

2D symplectic map obtained from a random Hamiltonian with

\coefﬁcients in [—1,1]. /




Figure 15: Non-symplectic tracking with Taylor map of order
19, and order 7 and 11 symplectic tracking with EXPO, for an

anharmonic oscillator.
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Figure 16: Non-symplectic tracking with Taylor map of order
3, and order 3 symplectic tracking with EXPO, for an exactly

\melectic quadratic map. /




Figure 17: Non-symplectic tracking with Taylor map of order 8,
and order 8 symplectic tracking with EXPO, for two realizations

of a lattice of the proposed Neutrino Factory.
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Figure 18: 1000 turn tracking of the FNAL Proton Driver with
the 15th order Taylor map, the corresponding S = 0 symplectified

&nap, and the element-by-element numerical integration. /




Summary

e Consideration of fringe field effects is always indicated
e It is possible to compute “exact” fringe field maps

e Tracking with fringe fields requires the same effort as

without fringe fields

e There are many more generating function types than

commonly known

e Optimal symplectification can be formulated using
techniques of symplectic geometry and topology

e In general, EXPO is the optimal generating function type




